Mark schemes

Q1.
(a) Heat (energy) change at constant pressure Ignore conditions even if wrong Ignore energy change
(b) $\quad \mathrm{M} 2 \mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{e}^{-}+\mathrm{Cl}_{2}(\mathrm{~g})$

Alternative $\mathrm{M}_{2} \mathrm{Ca}^{+}(\mathrm{g})+\mathrm{e}^{-}+2 \mathrm{Cl}_{(}(\mathrm{g})$
$\mathrm{M} 1 \mathrm{Ca}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})$
(c) $\mathrm{M} 1-795+\mathrm{LE}=193+590+1150+(2 \times 121)+(2 \times-364)$

Numbers and factors used correctly from cycle

M2 LE = (+) $2242\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Rearrangement to calculate LE
If one or both factors of 2 missing award 1 mark for (+) 2485, (+)2121 or (+)2606 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
Allow 1 mark for - 2242 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
(d) $\mathrm{MgCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}-(\mathrm{aq})$

Allow $\mathrm{MgCl}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{CH}(\mathrm{aq})$
Allow $\mathrm{MgCl}_{2}(\mathrm{~s})+\mathrm{aq} \rightleftharpoons \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{CH}(\mathrm{aq})$
(e) $\mathrm{M} 1 \Delta H$ soln $\mathrm{MgCl}_{2}=\Delta H$ latt diss $+\Delta H$ hyd $\mathrm{Mg}^{2+}+\mathbf{2} \Delta H$ hyd ClOR 2493-1920 + (2×-364)

M1 for expression with or without numbers
$\mathrm{M} 2=-155\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
M2 for answer
If factor of 2 missing for $\Delta \mathrm{H}$ hyd Cl - allow 1 mark for 209
(f) $\mathrm{M}_{1} \mathrm{Ca}^{2+}$ (ion) bigger/lower charge to size ratio (than Mg^{2+})

Allow converse answers
M1 Do not accept Ca²+ is a bigger atom/molecule
M1 Allow Ca ${ }^{2+}$ has more shells/ more distance of outer e to nucleus
Ignore more shielding

M2 weaker attraction/bond to ($\mathrm{O}^{\delta-}$ in) water

Q2.
(a) $\mathrm{CO}_{2} /$ gas is more disordered (than solid)

Allow answers based on carbon
Ignore CO_{2} is a gas and C is a solid

1
(b) 0 K

Units essential
Allow absolute zero OR-273 ${ }^{\circ} \mathrm{C}$
(c) M1 $\quad \Delta H=(3 \times-394)-(-1669 \times 2)$

M1 correct expression
$\mathrm{M} 2=2156\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
M2 if -2156 seen allow 1 mark out M1 and M2

M3 $\Delta S=(28 \times 4+214 \times 3)-(51 \times 2+6 \times 3)$
M3 correct expression
$\mathrm{M} 4=634\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
M4 if - 634 allow 1 mark from M4 and M4

M5 $\Delta G=\Delta H-\mathrm{T} \Delta S$ or $\Delta H=\mathrm{T} \Delta S$ or $\mathrm{T}=\Delta H \div \Delta S$
M5 expression or rearranged expression or with numbers

M6 $\Delta S=0.634 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$M 6 \Delta S=M 4 \div 1000$

2156
M7 $\quad \mathrm{T}=0.634=3400$ to $3401(\mathrm{~K})$
$M 7=M 2 \div M 6$ but must be a positive answer

Q3.
(a) M1
$\Delta_{\mathrm{f}} H=\Delta_{\mathrm{a}} H(\mathrm{Sr})+2 \Delta_{\mathrm{a}} H(\mathrm{Cl})+\Delta_{\text {tst IE }} H(\mathrm{Sr})+\Delta_{\text {2nd IE }} H(\mathrm{Sr})+2 \Delta_{\mathrm{EA}} H(\mathrm{Cl})+\Delta_{\mathrm{LE}} H$ (Sr)

Or
$-828=164+(2 \times 121)+548+1060+\left(2 \times \Delta_{\mathrm{EA}} H\right)+(-2112)$

M2 $2 \times \Delta_{\text {EA }} H=-730$

M3 $\quad \Delta_{\mathrm{EA}} H=-365\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow M3 = M2 $\div 2$
(+) $365,-304.5$, and $-730=2$ marks
(+) 304.5, (+) 730 and $-609=1$ mark
(+) 609 = 0 marks 1
(b)

All three lines must be shown
(c) (Has) covalent character or partial covalent bonding (as well as ionic bonding)

Allow chloride ion has been polarised or chloride ion distorted
Ignore not perfectly ionic
Ignore ions are not spheres
Do not allow references to molecules or ions with covalent character
Do not allow it is covalently bonded alone
(d) M1 (From Li+ to K+) size (of ion) increases OR charge density (of ion) decreases

M1 Allow K+ has more shells or larger distance between nucleus and outer electrons or larger ionic radius
Do not allow atomic radius or molecules

M2 (Electrostatic) attraction between metal ion and $\mathrm{O}^{\text {- }}$ of water decreases or attraction between lone pair on O and + ion decreases

M2 Not dependent on M1

Allow converse arguments

1
(e) M1 $\Delta_{\text {sol }} H=\Delta_{\text {LEdissociation }} H+\Delta_{\text {hyd }} H\left(\mathrm{Ca}^{2+}\right)+2 x \Delta_{\text {hyd }} H\left(\mathrm{Br}^{-}\right)$
or
M1 $-110=2176+(-1650)+2 x \Delta_{\text {hyd }} H\left(\mathrm{Br}^{-}\right)$

M2 $\left(2 x \Delta_{\text {hyd }} H\left(\mathrm{Br}^{-}\right)\right)=-636$

M3 $\quad \Delta_{\text {hyd }} H\left(\mathrm{Br}^{-}\right)=-318\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow M3 = M2 $\div 2$
(+)1858, (+)318 and -636 = 2 marks
+3716, -1858 and (+)636 = 1 mark
-3716 = 0 marks
[10]

Q4.
(a) M1 $\quad \Delta H=(-201+-242)-(-394)$

M2 $\Delta H=-49\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow consequential marking
M2 1 mark for $\Delta H=+49\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

M3 $\quad \Delta S=-180\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$

M4 $\Delta G=\Delta H-T \Delta S$
M4 Recall this equation. If M4 incorrect cannot score M6

M5 $\Delta G=-49-\left(890 x-\frac{180}{1000}\right)$ or M3 $\div 1000$
M5 Conversion of Δ S into $\mathrm{kJ} \mathrm{mol}^{-1}$ ($890 \times \mathrm{M} 3$)
$\Delta G=M 2-1000$

M6 $\Delta G=111\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
If Δ S not converted to $k J$ in M5, answer is +160151 $\mathrm{kJ} \mathrm{mol}^{-1}=5$ marks
(b) M1 $\Delta \mathrm{H}=$ intercept of y axis $=145\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

M1 Value between 144 and $146 \mathrm{~kJ} \mathrm{~mol}^{-1}$

M2 Gradient $=-\Delta S$ or a negative value

M3 Gradient x 1000

M4 $\Delta S=+167$ to $+173\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
$M 4+0.167$ to +0.173 scores 2 for ΔS -167 to -173 scores 2 for ΔS -0.167 to -0.173 scores 1 for ΔS
(c) Above 845 K reaction becomes (thermodynamically) feasible OR Below 845 K reaction is not (thermodynamically) feasible

Allow 845 to 860

Q5.
(a) Top line $\quad \mathrm{Cs}^{+}(\mathrm{g})+\mathrm{e}^{-}+\mathrm{I}(\mathrm{g})$

Lower line $\quad \mathrm{Cs}(\mathrm{s})+{ }^{\frac{1}{2}} \mathrm{I}_{2}(\mathrm{~s})$
(b) $79+x+376-314=-337+585$

So enthalpy change $=107\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow I mark for -107 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
Allow answer to 2sf or more
(c) (Almost/Mostly) purely/ perfectly ionic

If ionic not mentioned, allow no/little covalent bonding/character
Penalise references to atoms/molecules Ignore electronegativity
(d) $\quad \mathrm{M} 1 \Delta \mathrm{~S}=\left[\left(82.8+\frac{1}{2} \times 117\right)-130\right]=11.3\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$

M1 Correct entropy change value

M2 $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
M2 equation or equation with numbers

M3 $\Delta \mathrm{G}=337-298 \times 11.3 \times 10^{-3} \quad$ OR $\quad 337000-298 \times 11.3$
M3 for converting units:
ΔS into $\mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$ or $\Delta \mathrm{H}_{\text {into }} \mathrm{J} \mathrm{mol}^{-1}$

$$
\begin{aligned}
\text { M4 } \Delta \mathrm{G}=(+ & \left(334 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { or } 334000 \mathrm{~J} \mathrm{~mol}^{-1}\right. \\
& \text { M4 answer with correct units } \\
& \text { Any negative answer loses M4 }
\end{aligned}
$$

1
[9]

Q6.
(a) $\frac{\mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{-}+\mathrm{O}(\mathrm{g})}{\mathrm{Mg}^{+}(\mathrm{g})+\mathrm{e}^{-}+\mathrm{O}(\mathrm{g})}$
One mark for each level with correct state symbols
(b) $\Delta_{\mathrm{f}} H=\Delta_{\mathrm{a}} H(\mathrm{Mg})+1 / 2 \Delta_{\mathrm{BD}} H\left(\mathrm{O}_{2}\right)+\Delta_{\text {ist IE }} H(\mathrm{Mg})+\Delta_{\text {2nd }}{ }_{\text {IE }} H(\mathrm{Mg})+$
$\Delta_{\text {1st EA }} H(\mathrm{O})+\Delta_{\text {2nd EA }} H(\mathrm{O})+\Delta_{\mathrm{LE}} H(\mathrm{MgO})$
$-602=150+(1 / 2 \times 496)+736+1450-142+844+\Delta_{\text {LE }} H(\mathrm{MgO})$
$\Delta_{\mathrm{LE}} H(\mathrm{MgO})=-3888 /-3890\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow answers to 2sf or more
1 mark for +3888 or +3890
1 mark for -4136 or -4140 (not $496 \times 1 / 2$)

Q7.
A

Q8.
D

Q9.
(a) Enthalpy change or heat energy change when 1 mol of solid ionic
compound/substance or 1 mol of ionic lattice
1
is formed from its gaseous ions.
Allow: enthalpy change for:
$M^{+}(g)+$ X $^{-}(g) \rightarrow M X(s)$ or $\mathrm{Ag}^{+}(\mathrm{g})+\vdash^{-}(g) \rightarrow A g I$ (s)
$C E=0 / 2$ if describing wrong process (e.g. ΔH of lattice dissociation or ΔH of formation / or heat energy required)
Ignore heat energy released
(b) lattice dissociation energy $=(112+464+293)=+869\left(\mathrm{kJmol}^{-1}\right)$
lattice formation energy $=-869\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

$$
(+) 869=1 \text { mark }
$$

(c) Agl contains covalent character
$C E=0 / 2$ if atoms/molecules
For M1, allow the following:
not completely ionic / ions not spherical / ions distorted / some covalent bonding

Forces / bonds (holding the lattice together) are stronger
Ignore covalent bonds stronger (than ionic bonds)
Ignore electronegativity
Ignore references to energy
(d) AgNO_{3}
yellow ppt
Ignore ammonia/acidified/nitric acid/sulfuric acid

or

Cl_{2} or Br_{2} brown solution/black ppt

M2 dependent on correct M1 but mark on from Ag^{+} or Tollens

Q10.
$\Delta S=\Sigma S$ products $-\Sigma S$ reactants or
$253+(2 \times 198)-(2 \times 223+2 \times 5.7+50.2)(=649-507.6)$
This expression could also score M1
$\Delta \mathrm{S}=141(.4)\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$

This scores M1 and M2
Allow ecf for M3, M4 and M5 from incorrect M2
$\Delta G=\Delta H-T \Delta S$
$\Delta G=-60-\left(\underline{1262} \times 141(.4) \times 10^{-3}\right)$
This expression also scores M3.
For M4, allow $\Delta G=-60-\left(\underline{1262 \times t h e i r ~} M 2 \times 10^{-3}\right)$
feasible since ΔG is negative/less than zero
Allow consequential M6 from their ΔG

Q11.

(a) Not possible to prevent some dissolving

ALLOW It is soluble / dissolves / other hydrates may form / suggestions related to difficulty of measuring T (change) of a solid
(b) $\quad\left(\Delta_{\text {hyd }} H=\right)-155-(-39)$

OR labelled cycle
Minimum needed for 'labelled cycle'

$-116\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
1/2 for (+)116 or for -29 or for seeing -116 that has then be processed further
(c) This question is marked using levels of response. Refer to the Mark Scheme Instructions for examiners for guidance on how to mark this question

Level 3 (5-6 marks)

All stages are covered and the explanation of each stage is correct and
virtually complete.
Stage 2 must include use of a graphical method for Level 3 (i.e. 'highest T reached' method is max Level 2)

Answer communicates the whole explanation, including reference to enthalpy, coherently and shows a logical progression through all three stages.Answer is full and detailed and is supported by an appropriate range of relevant points such as those given below:
For the answer to be coherent there must be some indication of how the graph is used to find ΔT

Level 2 (3-4 marks)

All stages are covered (NB 'covered' means min 2 from each of stage 1 and 3) but the explanation of each stage may be incomplete or may contain inaccuracies
OR two stages covered and the explanations are generally correct and virtually complete

Answer is coherent and shows some progression through all three stages. Some steps in each stage may be out of order and incomplete

Level 1 (1-2 marks)

Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies
OR only one stage is covered but the explanation is generally correct and virtually complete

Answer shows some progression between two stages

Level 0 (0 marks)

Insufficient correct Chemistry to warrant a mark

Indicative Chemistry Content

Stage 1 Method

(1a) Measures water with named appropriate apparatus
(1b) Suitable volume/mass / volume/mass in range $10-200 \mathrm{~cm} 3 / \mathrm{g}$
(1c) Into insulated container / polystyrene cup (NOT just 'lid')
(1d) Add known mass of $\mathrm{MgCl}_{2}(\mathrm{~s})$
(1e) Use of 'before and after' weighing method. NOT 'added with washings'

Stage 2 Measurements (could mark from diagram)

(2a) Record initial temperature (min 2 measurements)
(2b) Record T at regular timed intervals for 5+ mins / until trend seen
(2c) Plot T vs time
Stage 3 Use of Results (3a and 3b could come from diagram)
(3a) Extrapolate lines to when solid added (to find initial and final T)
(3b) $T_{\text {tinal }}-T_{\text {initial }}=\Delta T /$ idea of finding ΔT from graph at point of addition
(3c) $q=m c \Delta T$
(3d) amount $=$ mass $/ \mathrm{Mr}\left(0.80 / 95.3=8.39 \times 10^{-3} \mathrm{~mol}\right)$
(3e) $\Delta H_{\text {soln }}=-q / 8.39 \times 10^{-3}$ or in words
This could all be described in words without showing actual calculations but describing stages

If method based on 'combustion’ Max Level 1
(d)

M1 = 5 points correctly plotted
M2 = line drawn correctly (NOT if curved, doubled or kinked)
(Check line of best fit if through 250, -600.5 and 280, -595.5 +/- one small if through $250,-600.5$ and $280,-595.5$ +/- one small
square then award M2, if all crosses on line award M1 as well)

Gradient $=\Delta(\Delta G) / \Delta T=0.167\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
$(\Delta G=\Delta H-T \Delta S$ so gradient $=-\Delta S)$
$\Delta S=-167\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
M4 = unit conversion i.e. $\mathbf{M 3} \times 1000$; M5 = -sign (process marks)
Correct answer with sign gets M3, M4 and M5
ALLOW-163 to - 171
(d)

Q12.
C

